Climate change effects on stream and river temperatures across the northwest U.S. from 1980-2009 and implications for salmonid fishes
نویسندگان
چکیده
Thermal regimes in rivers and streams are fundamentally important to aquatic ecosystems and are expected to change in response to climate forcing as the Earth’s temperature warms. Description and attribution of stream temperature changes are key to understanding how these ecosystems may be affected by climate change, but difficult given the rarity of long-term monitoring data. We assembled 18 temperature time-series from sites on regulated and unregulated streams in the northwest U.S. to describe historical trends from 1980–2009 and assess thermal consistency between these stream categories. Statistically significant temperature trends were detected across seven sites on unregulated streams during all seasons of the year, with a cooling trend apparent during the spring and warming trends during the summer, fall, and winter. The amount of warming more than compensated for spring cooling to cause a net temperature increase, and rates of warming were highest during the summer (raw trend = 0.17°C/decade; reconstructed trend = 0.22°C/decade). Air temperature was the dominant factor explaining long-term stream temperature trends (82–94% of trends) and inter-annual variability (48–86% of variability), except during the summer when discharge accounted for approximately half (52%) of the inter-annual variation in stream temperatures. Seasonal temperature trends at eleven sites on regulated streams were qualitatively similar to those at unregulated sites if two sites managed to reduce summer and fall temperatures were excluded from the analysis. However, these trends were never statistically significant due to greater variation among sites that resulted from local water management policies and effects of upstream reservoirs. Despite serious deficiencies in the stream temperature monitoring record, our results suggest many streams in the northwest U.S. are exhibiting a regionally coherent response to climate forcing. More extensive monitoring efforts are needed as are techniques for short-term sensitivity analysis and reconstructing historical temperature trends so that spatial and temporal patterns of warming can be better understood. Continuation of warming trends this century will increasingly stress important regional salmon and trout resources and hamper efforts to recover these species, so comprehensive vulnerability assessments are needed to provide strategic frameworks for prioritizing conservation efforts. Climatic Change (2012) 113:499–524 DOI 10.1007/s10584-011-0326-z D. J. Isaak (*) : S. Wollrab : D. Horan :G. Chandler U.S. Forest Service, Rocky Mountain Research Station, Air, Water, and Aquatics Program—Boise Aquatic Sciences Lab, 322 E. Front St., Suite 401, Boise, ID 83702, USA e-mail: [email protected]
منابع مشابه
Copper River Delta: an Integrated Expansion of Freshwater Ecological Evaluations
The Copper River Delta in the southeast Alaskan Chugash National Forest offers unique opportunities for investigations of pond and stream ecosystem structure and function and the implications of climate change on plant and animal communities of these aquatic habitats. The economic, recreational, and social impact of these investigations is large and carries very significant management implicati...
متن کاملEffects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network.
Mountain streams provide important habitats for many species, but their faunas are especially vulnerable to climate change because of ectothermic physiologies and movements that are constrained to linear networks that are easily fragmented. Effectively conserving biodiversity in these systems requires accurate downscaling of climatic trends to local habitat conditions, but downscaling is diffic...
متن کاملClimate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams.
Protecting hydrologic connectivity of freshwater ecosystems is fundamental to ensuring species persistence, ecosystem integrity, and human well-being. More frequent and severe droughts associated with climate change are poised to significantly alter flow intermittence patterns and hydrologic connectivity in dryland streams of the American Southwest, with deleterious effects on highly endangered...
متن کاملProjected climate-induced habitat loss for salmonids in the John Day River network, Oregon, U.S.A.
Climate change will likely have profound effects on cold-water species of freshwater fishes. As temperatures rise, cold-water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature. Spatial dependencies in stream networks are comple...
متن کاملTiming matters: species-specific interactions between spawning time, substrate quality, and recruitment success in three salmonid species
Substratum quality and oxygen supply to the interstitial zone are crucial for the reproductive success of salmonid fishes. At present, degradation of spawning grounds due to fine sediment deposition and colmation are recognized as main factors for reproductive failure. In addition, changes in water temperatures due to climate change, damming, and cooling water inlets are predicted to reduce hat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010